RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000

Large deviation statistics of the energy-flux fluctuation in the shell model of turbulence
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The energy-flux fluctuation in the shell model of turbulence is numerically analyzed from the large deviation
statistical point of view. We first observe that the rate function defined in the inertial range is independent of
the Reynolds number. The rate function derived by the cascade model of the log-Poisson statistics turns out to
be in good agreement with the present numerical result in the region where strong singularity of fluctuation
exits. This fact may imply the universality as well as the robustness of the large deviation statistical quantities
in turbulence.
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The physical process of fully developed turbuleriBey- €ni1
nolds number Re 1) is well established as the energy trans-
fer process from the energy injection scal¢o the dissipa-

tion scalen. The statistical property of turbulence in the where exp()=\"’, the statistical property df, is supposed

m‘;g%l rrr?gg:ursecdalgf/zrfel fNLO) qvxgng(taieimt\;]eerslz:w,gﬁtrj]:jciza:lsve-to be random, and is free from the scale leweDne should
locity differencedv, across a distanceand the energy dis- note that Eq(2) holds forn=0,1, . ... Iog(L/7)(=N). Let us

sipation ¢, averaged over a region of scdleMuch of the ~Introduce the local average value pf by Zy=3]207/n
experimental and theoretical research are concerned with the (109,€,—109, €)/n, wheree,= € is assumed to be constant.
scaling exponentg(q) andr(q) which characterize the scal- If the probability distribution function(PDF) of z; is sup-
ing behaviors of the structure functions defined as posed to be identical and free fromPDF for z,, Q,(2)

=(48(z,—z)) may obey the normal distribution for a large
o vl ! &(a) o ! 7a) because of the central limit theorg@LT). Namely, we sup-
(fovi|H~Vg Ll (a%)~eg Ll (1) pose that PDF o€, obeys the log-normal distribution. This
yields the intermittency exponent as(q)=-—u«q(q
. _ =1)2[pu=—-7(2)] and ¢(q)=09/3— uxg(q—3)/18 is ob-
where(. - -) being the ensemble averagé, and eg(=e,) tained by using the refined similarity hypothesisy,
represent the characteristic velocity and energy dissipation’ | Uz /3

rate with scald., respectively. By supposing that is spa-

tially uniform provided that the scalés in the inertial range,
the relation{(q) =q/3 and7(q) =0 are derived by Kolmog-
orov (K41) [1]. However, it is widely known from experi-

=exp(z,), (2

€n

The result of K62 is thus characterized by the quadratic
curves ofZ(q) and 7(q). In fact, K62 is considered to be a
good approximation for low order moments but not for high

ments or direct numerical simulations that thdependences order ones, .This Is because the Gaussiap chara_cteris_tics of
of £(q) and 7(q) are different from the K41 law. This is %(z) are limited tF) the weak fluctuation region, i.e.,
noticed as the intermittency problem, and the strong fluctualza—Z*|~O(L/Jn) with the ensemble average® of z,.
tions of the velocity field or energy dissipation field have Partlcularly, the statistics of the strong smgul_arlty_ of fluctua-
been discussed in connection with the intermittent cascad#n cannot be described by the K62 approximation. In such
dynamics[2]. a case, instead of CLT, one can discuss the nature of PDF by
The Kolmogorov 1962 theor{k62) [3], the first theoret-  Utilizing the large deviation theor§t DT), which is a gener-
ical approach to the intermittency problem, discussed the stalization of CLT[2,4]. LDT insists that PDF ofz, asymp-
tistics of ¢ in a concrete manner. The key idea is the self-totically takes the form
similarity hypothesis on fluctuations of energy dissipation.
Namely, by introducing the ratio (Ja‘|n(= €,) averaged over Qn(2) \/ﬁepr[— S(z)n] (©)]
the scald,,=\""L (A\>1) and that over the scalg_ 1,
for n>n., n. being the correlation step @f,. The function
S(z), being independent aof, is called the rate functiof2]

*Present address: Department of Applied Analysis and Comple®" the fluctuation spectrun{4]_ and characterizes the
Dynamical Systems, Graduate School of Informatics, Kyoto Uni-Symptotic form of PDF. Ergodicity of, requires tha5(z)
versity, ~Kyoto 606-8501, Japan. Electronic address:iS @ concave function and takes a minimum value @*at

watanabe@acs.i.kyoto-u.ac.jp Therefore, PDF fore,=¢g epr(nZ) is written asP,(e)
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~exp[—nSn~tlog,(ee))]/(Vne). Since PDF ofe, for  ences between NS and GOY is the nonlinear terms modeled
small scalel is asymptotically characterized t§(z), S(z) by the local interaction ofi, in the wave number space. The
plays the central role of the fluctuation statistics &f. intermittent properties of GOY have been extensively dis-
Moreover, the moments defined as,%)= e, exp,(Nqz)) cussed, e.g.,j@%)g].and thg scgling exponed(q) defined
lead to the characteristic function(q) via (epr(an)) by <|u“|q>~|.(“ n the inertial range turns out to be
<exp[—nr(q)] for largen. Using Eq.(3), we get anomalous, i.e., different from the K41 law. This fact is con-
sistent with the result in real turbulence. Physically, the fluc-
tuation of energy-flux function
(€)= f exp[—n{S(z) —qz}]dz (4)
1
The above integral is evaluated by the steepest descent Fa(t)=—kqIm UnUn+1Un+2 7 Un—1UnUn g (8)
method for largen by supposingS’(z)>0. We obtain
. , , is more relevant to the intermittency dynamics rather than
7(q)=min[S(z) —qz], (O tself. In the inertial range scale, we expect th{#E,|%)
z ~k;, @ and ¢(q)=0q/3+ 7(q/3) is established because of

which is identical to the Legendre transform betweenthe scaling relatiofiF | ~kn|uy|>. Moreover|F | is a physi-
{z,5(z)} and{q,(q)}. SinceS(z) —qz has the unique mini- cal quantity directly characterizing the cascade dynamics in
mum at z=z(q), Eq. (5) yields 7(q)=S(z(q))—qz(q), the inertial range rather than the energy dissipation rate. So
dS(z)/dz=q, z(q)=—7'(q) and x(q)=2'(q)=—7'(q). we investigate the fluctuation property |6%,| by calculating
From the data analysis point of view, when we can get aX(2).
large amount of data ensemble, the statistical analysis by In GOY, €, corresponds to the temporal average of en-
PDF of €, may be better than calculating all the moments ofergy dissipation rates(t) = »={L,k?|u;|, which is equiva-
€,. Smallz describes a weak intermittenéiaminarlike) sta-  lent to(F,) in the inertial range. We takgF,|) instead of
tistics, and a strong intermittencipursd is characterized by (F,) to keep the equality(1)=0, and calculate PDR,(2)
largez-values. Therefore, the form &(z) is directly related  for z,= (log,|F,|—logy(|F,|))/n to evaluateS(z) by
to the realization probability of various intermittent features
of turbulent field. 1
When the local scaling exponent is defined ase, /e, S(z)=—+10g; Qn(2). (C)
~ (/L)% to discuss the multifractality of the fluctuation of
energy dissipation field, the Hausdorff dimensfge) of the  For |argen, i.e., in deeper shells in the inertial range, it is
support with the value: is related t0S(z) as[2] expected tha§(z) obtained from Eq(9) is sufficiently con-
S(2)=3-f(1-2) ©) verged[10]. In the present study, we take “18ata points to
' construct PDF from the numerical simulation of GOY. The

The treatment of intermittency from the present LDT view- Parameters are chosen lag=2 ‘ andf=5_.9(1+|) X107
point is thus essentially consistent with the multifractal for-With the totalgshell numbeN=22, »=10"" (RUN1) and
malism of turbulencé2,5]. One should note that the concept N=27,»=10"" (RUN2). For numerical integration scheme,
of the multifractal is not clearly used in the present approachth® second order Adams:l?a_tshforth schesiewith the time
Namely, it should be stressed that the funct®(z) can be increment ofAt=>5.0x10"" is used. Under this condition,
defined as a self-similarity quantity without connection to thethe inertial range, which is defined as that where long-time
multifractal structure in real turbulent field. In the present@verage ofF, does not practically depend am is in n=
Rapid Communication, to analyze the intermittency statis®—15 for RUN1 andh=7-20 for RUN2. GenerallyS(z)
tics, we directly calculateS(z) by numerically integrating ©btained via Eq(9) is not in agreement witt8(z(q)) ob-
the shell model of turbulence defined by the physical quant@ined via Legendre transform e{q) due to the finite size
tities in the wave number space, and compare the result witgffect ofn. S0S(z) evaluated fronQ,(z) are slightly shifted
theories. along the abscissa so that the minimum positionStf)

There are dynamical models based on the energy cascadeincides withz* =(z,) for largen, wherez* is numerically
picture to understand the turbulence from the dynamical sysdetermined by assumindog,|F,|)=2*n+C, C being a con-
tem viewpoint{6]. We take the so-calle@GOY) shell model  stant, in the inertial range. This prescription is not crucial if
[7], which is the dynamical system composed of dimen-  we are interested in the functional form $fz) converged in
sional differential equations the finite inertial rangen.

The temporal evolutions oF,(t) in the inertial range

%:ic K 2Unt S @) shellsn=12, 13, and 14 for RUN1 are shown in Fig. 1. The
dt n™ Ve EnT Onaly dynamics ofF,, represents intermittent characteristics in the
process of the energy transfer from a large scale motion to
where Cn=KnUp,1Un2—Kn_1Up_1Upn.1/2  small one, and consists of the two phases, laminar and burst
—kn_oUr_jur_,/2 is the nonlinear term anll,=2"k, (n phases. In addition, we observe that the intensity of intermit-
=1,...N) corresponds to the wave number of théh  tent fluctuation is strong in high wave number shells more

shell.u, is the complex variable assigned to the shell numbethan low wave number ones, which may cause the self-
n. These equations are regarded as the reduction model of tlsémilar statistical nature df,, with respect to shell variables
Navier-Stokes equatiofNS). One of the important differ- with different shell numbers. Figure 2 represents the rate
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0.15 numbersn=14,19 for RUN1, 2, respectively.
er g';g cascade dynamics. Moreover we must notice B(@) is a
' concave function in a wide region. Left edge $fz) ap-
0.00 proximately takes the forn$(z) = —a(z—z,) with a posi-
-0.05 tive constant and a constart,,. In this region, PDF ofF |
-0.10 . ' : : is represented aB(|F,|)~|F,|2 1. Numerical result shows
0 5 10 ;4 15 20 25 a=1, which implies that PDF is finite aF ,|=0. This may

. . . N originate from the inverse energy cascade process. This na-
FIG. 1. Time evolutions oF(t) in the inertial range shell@ 110 s quite different from the statistics of the energy dissi-
n=12, (b) 13, and(c) 14 for RUNL. pation rate, which is a positive defined variable, and reflects
function obtained by measuring, (z) for energy-flux fluc- the characteristics of fluctuation of energy-flux fluctuation. A
- o .~ . great interest on the inertial range statistics is the Reynolds
tuation in Fig. 1. One clearly finds that each rate function inJumber dependence. The converged rate functions in the in-
the inertial range shell is on the same curve, which may b%rtial range are obtéined for two different Re r(iRUNL
the universal function characterizing the intermittent energy, g RUN2. We use the data of the shell numbars 14 and

19 for RUN1 and 2, respectively. Figure 3 clearly shows the

14 |- | P converged rate functions are independenRef
JRes ! B | Noting the concavityS’(z)>0 guaranteed from the nu-
ey \ n=12 + { . . . ..
ol b adlin \ n=13 x| | merical results, the rate function around its minimum can be
' e~ \ n=14 @ 4 approximated as
- \ Log-Poisson --------—
A Gaussian
1t \
S~ 5= [2-2(0)T (10
)~ z—z .
D08+ 2x(0)
e
A 06 - This approximation is limited in the region where CLT can
' be applied. But if we apply the form of Eq10) to all the
regions ofz, the relationz(0)= — x(0)/2 isrequired, which
04 is identical to the K62 theory. In this case, the intermittency
exponent is defined by= x(0)=— 7(2) and the quadratic
02 curve is determined by the one parameterLet us give a
comment on the applicability of the asymptotic form of Eq.
0 ' . (10). Althoughz(0) andx(0) have no interrelation in gen-
% 25 2 45 41 05 0 05 eral, the K62 theory assumes the relatirf®)= — x(0)/2

z =17(2)/2. This implies that K62 is fitted around the neigh-
FIG. 2. Rate function calculated from E@) for the data of Fig.  Porhood ofz=z(2), notz(0) by deflnlng_ the Intermittency
1. Dotted line represents the rate function derived by the She€Xponentu=—7(2). Thepresent numerical study gives
Leveque modefEq. (11)] and the straight line represents the qua- =2(0)=—0.31 and —x(0)/2=-1[2S"(z*)]=-0.38

dratic curve around the minimum of ddthe Gaussian approxima- from Fig. 2, which are clearly different from the prediction
tion for Q,(2)]. of K62. The quadratic curve obtained from the Gaussian ap-
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proximation around the minimum is shown in Fig. 2. As a z—y (z—v)(1-pB) ¥
natural result, the Gaussian approximation is valid araund S(z)= log 3 yiogg |~ 1+ 1g (13)

=2(0) and the fluctuations are characterized by the form of
S(2) which is generally different from the quadratic curve TWO parametersy and 8, are chosen ay=0.625 andj
except the neighborhood of the minimum. =0.58, which are numerllcally estimated frd_[fq) of GOY

If one discusses the statistical law for intermittency in!n [9]. Th? comparison with the present expenmenta! results

) X is made in Fig. 2. The present result and SL are in good

fully developed tu.rbulenc.e fr.om the LDT viewpoint, the fol- agreement with each other in the right regiorS6t), i.e., in
lowing two questions arise(i) Are z(0) and x(0) really  the burst dominant region. Characteristics of strong singular-
constants in the high Reynolds number limit? diglhow ity of fluctuation are thus excellently explained by SL. On
does S(z) deviate from the quadratic curve predicted by the other hand, the left region 8(z) are extremely different
CLT? The first question is connected to the Re dependend&om SL, which implies that the weak singularity of fluctua-
of applied region of CLT foiS(z). Experimental results de- tions cannot be described by SL. The feature of SL pointed

viate from the loa-normal distribution as Re is increasedfm above agrees with that from the direct numerical simula-
9 ion of NS [14] or the data analysis of real turbulent flow

[11]. If S(2) is well-defined for Re-x, z(0) andy(0) must [15].

be constants. The exponent well known as a universal In this Rapid Communication, we discussed the statistical
constant characterizing intermittency, has been investigatedature of intermittency of energy-flux fluctuation with the
in detail, e.g., in[11], but there is no particular reason why GOY shell model from the LDT point of view by calculating
all statistics are determined only by one parameterwe the rate functior§(z) from PDF. We found tha$(z) in the

insist thatz(0) andy(0) are important quantities to investi- irgzzgil rr;‘?egcetigsg i?ﬁ:g‘;g‘:}‘;”;gg%:ﬁg tgfaftﬁl(czt)u;(t)ig:\hg;rees
gate universal features of intermittency in turbulence. This uite well with SL. This will support the result ¢8] indi-

point has not been pointed out so far. The second problem i tingZ(q) of GOY is in good agreement with SL. However,
related to the statistical nature of strong or weak singularitiesy| cannot describe the correct statistics of GOY in a weak
of fluctuations. Various phenomenological cascade modelsingularity region. K62 explains the weak fluctuation statis-
are constructed fof(q) or 7(q) to explain the experimental tics around the minimum d8(z) and the strong fluctuation is

or numerical simulation result2]. In this paper, the rate described by SL quite well. It is quite natural that each cas-
function S(z) of GOY is compared with that obtained from cade model usually has its own applicability. It is surely a
the Legendre transformation of the She-Leveque m¢Blel ~ great challenge to construct a unified cascade model explain-
derived by applying the Log-Poisson statistics as the multi{"9 all the statistical properties of energy-flux fluctuations.
plicative cascadg12]. The SL yields r(q)=—vyq+ (1 One of the authoréT.W.) was supported by JSPS. This

—BN/(1-p) [13], which explains the results of experi- work was partially supported by Grant-in-Aid for Scientific
ments or intermittent scaling of shell models excellently.Research No. 09640487 from Ministry of Education, Sci-

This is equivalent to ence, Sports and Culture of Japan.
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